SPECIFYING
&
MAINTAINING
CONVEYORS
FOR BULK SOLIDS

by H. Colijn

Your Company Name
3900 River Road
Your City, New Jersey 08110
Phone: 732-928-4363 FAX: 732-928-xxxx

CLICK HERE FOR DETAILS to buy Book Rights and Domain Name
TABLE OF CONTENTS

Chapter 1
The Beaumont Birch Story 5

Chapter 2
Prelude to Belt & Chain Conveyors 9
A - Introduction 9
B - Standards, Terms and Definitions 10
 1 - Capacity (Operating, Rated, Peak, Design) 11
 2 - Equipment Specifications for Procurement 13
 3 - Contract Requirements 14
 4 - Engineering Requirements 15
 5 - Quality & performance 16
C - Analysis & Selection 18
 1 - Material Classification 20
 2 - Engineering and Systems Approach 21
 3 - Plant Layout 26
 4 - Sources of Supply 27
D - Bibliography 28

Chapter 3
Specifying Belt Conveyors 29
A - Comments & Definitions 29
 1 - Applications & Limitations 30
B - Layout & Capacity 32
 1 - Layout Arrangements 32
 2 - Angles of Incline 33
 3 - Belt Widths & Belt Speeds 37
 4 - Belt Conveyor Capacities 40

CLICK HERE FOR DETAILS to buy Book Rights and Domain Name
C - Belt Tension & Horsepower
1 - Values for Weight Factors & Belt Weights 46
2 - Tension, Slack Tension & Wrap Factor 48
3 - Minimum Tension, Belt Sag & Idler Spacing 50
4 - Graphical or Tension Diagrams 51
5 - Acceleration and Braking Forces 59

D - Belting
1 - Grades of Conveyor Belting & Their Uses 62
2 - Conveyor Belting Construction 64
3 - Belt Selection 68
4 - Min & Maxi Ply & Minimum Pulley Diameter 70

E - Idlers & Pulleys
1 - Types of Idler Design 75
2 - Idler Selection 80
3 - Pulley Terminals 84
4 - Transition From Trough to Flat Pulley 85
5 - Idler & Belt Conveyor Alignment 86

F - Conveyor Loading & Discharging
1 - Loading Material on the Belt 88
2 - Discharging Material from the Belt 93

G - Belt Conveyor Drive Systems
1 - Drive Location and Arrangements 97
2 - Torque Control Devices 99
3 - Field Determination of Belt Tension 102

H - Bibliography

Chapter 4 Specifying Chain Conveyors

A - Introduction
1 - Conveyor Classes 107
2 - Terms and Definitions 108
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B - Conveyor or Engineering Chains</td>
<td>111</td>
</tr>
<tr>
<td>1 - Types of Chains</td>
<td>112</td>
</tr>
<tr>
<td>2 - Attachments</td>
<td>119</td>
</tr>
<tr>
<td>3 - Chain Metals</td>
<td>119</td>
</tr>
<tr>
<td>C - Chain Design Considerations</td>
<td>112</td>
</tr>
<tr>
<td>1 - Direction of Travel</td>
<td>128</td>
</tr>
<tr>
<td>2 - Notes on Operation and Maintenance</td>
<td>129</td>
</tr>
<tr>
<td>3 - Conveyor Chain Selection</td>
<td>131</td>
</tr>
<tr>
<td>4 - Sprockets</td>
<td>140</td>
</tr>
<tr>
<td>D - Apron Conveyors</td>
<td>142</td>
</tr>
<tr>
<td>1 - Types of Apron Pans</td>
<td>143</td>
</tr>
<tr>
<td>2 - Supporting Structure</td>
<td>146</td>
</tr>
<tr>
<td>3 - Apron Conveyor Speed</td>
<td>147</td>
</tr>
<tr>
<td>E - Drag Conveyors</td>
<td>148</td>
</tr>
<tr>
<td>F - Scraper and Flight Conveyors</td>
<td>150</td>
</tr>
<tr>
<td>1 - Layout and Arrangements</td>
<td>151</td>
</tr>
<tr>
<td>G - "En Masse" Conveyors</td>
<td>155</td>
</tr>
<tr>
<td>1 - Layout and Arrangements</td>
<td>157</td>
</tr>
<tr>
<td>2 - Capacity and Required Power</td>
<td>158</td>
</tr>
<tr>
<td>3 - Tubular Conveyors</td>
<td>161</td>
</tr>
<tr>
<td>H - Bibliography</td>
<td>162</td>
</tr>
<tr>
<td>Appendix</td>
<td>163</td>
</tr>
<tr>
<td>Index</td>
<td>165</td>
</tr>
</tbody>
</table>
FORWARD
(We’ll substitute your story)

Thanks to modern conveyor technology one dockworker can unload 230 times more grain in a day than 10 slaves of the Roman Empire could 2000 years ago.

Vast quantities of bulk solids such as coal, ash, sludge, cement, grains, potash, limestone, sand, metal ore and their various by-products must be handled, transported, stored and processed. The infinite variety of bulk solids that must be moved continues to increase constantly in today’s expanding economy. This has resulted in a considerable number of technical problems for the efficient handling of these materials. These problems can range from minor inconvenience to major stoppages with resultant loss of production. Since large bulk handling units are often integrated into overall processing systems, these stoppages and interruptions to production are often economically damaging.

BEAUMONT BIRCH COMPANY, INC. is publishing this book to assist professionals in the chemical, food, waste treatment and power generating industries in the intricate process of Specifying and Maintaining Conveyors for Bulk Solids.

We hope that this reference, excerpt from “Mechanical Conveyors for Bulk Solids” by well-known author, engineer, lecturer and college professor, H. Colijn will provide the information necessary to aid in the selection and operation of complex bulk solid conveying systems.

Beaumont Birch management will welcome questions, comments or suggestions by readers on how we can improve this reference and serve industry better.

Your Name, President
Your Company Name
3900 River Road
Your City, New Jersey 08110
Phone: 732-928-4363 FAX: 732-928- xxxx

CLICK HERE FOR DETAILS to buy Book Rights and Domain Name
INDEX

400 class pintle, 112
700 class pintle, 115
800 class bushed, 115

-A-

Acceleration and braking forces, 59
Alignment, 86, 87, 119, 124
Allowable chain pull, 110
Angle of inclination, 143, 144
Angle of inclination, 33, 88, 91
Angle of repose, 33, 40, 41
Angle of surcharge, 40-42, 76
Angles of incline, 33
Applications and limitations, 30
Applications, 30
Apron conveyor pan, 143
Apron conveyor speed, 147
Apron conveyor, 142-148, 151, 152
Apron conveyors, 142, 148
Apron, 107, 116, 142, 143, 145, 147, 148, 151, 152
Arm body, 140
Assembled tension diagram, 54
Attachment strength, 130
Attachments, 109, 115, 119, 130, 139
Average ultimate strength, 110

-B-

Bearing, 62, 67, 73, 77, 79, 80, 110, 122, 124, 128, 138
Beaumont Birch Story, 4-7
Belt alignment, 87
Belt carcass, 61-72
Belt cleaners, 87, 95
Belt construction, 32, 64, 75
Belt conveyor arrangement, 30
Belt training, 32, 85-87
Belt weights, 46
Belt width, 32, 37, 40-43, 78, 82, 86, 87, 89
Belt widths and belt speeds, 37
Belting fiber characteristics, 66
Belting, 45, 47, 60, 63-66, 73
Bibliography, 28, 103, 162
Breakers, 62
Brinell, 120, 121, 122
Brinnel hardness scale, 123
Bushings or thimbles, 110

CEMA idler specifications, 78
CEMA material classification, 23
CEMA material tables, 22
CEMA, 10, 20-23, 44, 45, 77, 78
Centrifugal clutch couplings, 101
Chain and sprocket wear, 129
Chain attachments, 144, 151
Chain conveyor, 10, 106, 108, 111, 117, 136, 143, 150, 162
Chain conveyors and bucket elevators, 162
Chain design considerations, 122
Chain friction factors, 133
Chain metals, 119
Chain pull, 110, 116, 131-140, 147
Chain rolling, 108, 134
Chain selection table, 139
Chain sliding, 107, 133, 139
Chain types, 137
Chain wear, 125, 129, 130
Cleanout door, 7
Coal bunker, 7
Colijn, H., 28
Combination, 59, 116, 139
Commercial evaluation of bids, 15
Comparitive hardness guide, 123
Conveyor belt construction, 64
Conveyor bucket, 7
Conveyor capacity, 37, 42
Conveyor chain selection procedure, 131
Conveyor chain selection, 131
Conveyor chain, 7, 112, 119, 120, 128, 131, 136
Conveyor classes, 107, 132
Conveyor Equipment Manufacturer's Association, 10
Conveyor loading and discharging, 87
Conveyor or engineering chains, 111
Conveyor tension formulas, 46
Conveyors and related equipment, 103, 162
Conveyors, 10, 28, 47, 71, 103, 138, 158, 160, 162
Corrosive conditions, 130
Cost, 6, 21
Covers, 60, 63, 64
Cross sectional area, 43

CLICK HERE FOR DETAILS to buy Book Rights and Domain Name
Design considerations, 88, 122
Design working strength, 110
Detachable link, 112
Determine the class of conveyor, 132
Determine the design working load, 136
Determining belt tension distribution, 51
DIN 22101, 45
DIN, 37, 44, 45
Direction of travel, 128
Discharging material from the belt, 93
Drag chain conveyor, 108
Drag conveyor, 6, 7, 114, 148, 149
Drag, 6, 7, 11, 106-108, 114, 118, 139, 148, 149, 152
Drive location and arrangement, 97
Drop forged rivetless, 117, 153
Dry fluid couplings, 100
Ductile iron, 121
Duramal, 120
Eddy current couplings, 99
Effect of acceleration or braking, 59
Effective tensionslack and wrap factor, 48
Elastomer characteristics, 66
Elevator bucket, 7
Empty and load friction tensions, 53
En-Masse conveyor, 108
Engineering and systems approach, 21
Engineering chain, 108, 109, 111
Estimate the total required chain pull, 132
Fatigue, 126
Feeder, 31, 88, 106, 143, 153
Field determination of belt speed, 102
Filling weave, 67
Flight and scraper conveyors, 150
Flight conveyor, 7, 108, 148, 150, 151, 153
Flight, 118, 148, 150, 151, 153, 161
Fluid couplings, 100, 101
FPM, 66, 102, 147, 149, 153, 158, 160
Friction factor and length factor, 46
Friction, 44, 46, 53, 58, 133, 134
Furnace & boiler door, 7

General definition of a conveyor, 11
General design and selection of conveyor systems, 28
Grade 1 belting, 63
Grade 2 belting., 64
Grade 3 belting., 64
Grades of conveyor belting & their uses, 62
Graphical or tension diagram method, 51

Head drive, 53, 55, 57, 58
Hoppers, 7
Horizontal head drive conveyor, 55
Horsepower calculation, 46
Horsepower, 10, 44-49, 53, 58, 73, 96, 98, 99, 102, 135

Idler and belt conveyor alignment, 86
Idler selection, 80, 83
Idler service factor, 82
Idler, 40, 42-45, 50-51, 70-87, 92, 102, 148, 152
Idlers & pulleys, 73, 86
Inclination, 33, 40, 88, 89, 91, 143, 144
Incline conveyor, 53, 56, 57
Incline load and belt weight tensions, 53
Industrial car, 7

Layout and arrangements, 151, 157
Layout and capacities, 32
Layout arrangements, 32
Layout, 22, 26, 27, 32, 87, 151, 157, 161
Length factor, 46
Leno weave, 62, 67
Load rating, 51, 77, 79, 84
Loading material on the belt, 88

Make tentative chain selection, 137
Malleable iron, 119
Malleable roller, 116
Manganese bronze, 121
Material classification, 20
Material friction factors, 134
Material weight and lump factor, 83
Maximum angle of incline, 35
Maximum lump sizes and speeds for apron conveyors, 148
Maximum plies for troughing, 73
Mechanical Conveyors for Bulk Solids, 28
Minimum and maximum ply & pulley diameter, 70
Minimum plies for load support, 74
Minimum tension, belt sag and idler spacing, 50
Miscellaneous fluid couplings, 101
Moh's index, 121
Multiple grade conveyor head drive, 58

CLICK HERE FOR DETAILS TO BUY BOOK RIGHTS AND DOMAIN NAME

Notes on operation and maintenance, 129

Operating capacity, 12, 13
Operations, 11, 24, 31, 127
Oscillation of chain speed at sprockets, 126

Pan conveyor, 7
Peak capacity, 12
Pearlitic, 120, 121
Perduro, 121
Permaclad, 121
Phone, 4
Pins, 110, 139
Pitch, 109
Plain weave, 67
Plant layout, 26, 27
Plate body, 140
Pneumatic conveyor, 7
Preferred drive location, 53-58
Pulley diameter, 64, 69, 70, 73, 75, 95, 96
Pulley terminal, 84
Pulley, 49, 50, 75, 85

Rated capacity, 12, 13, 126
Recommended minimum drive pulley diameters, 75
Redler, 155, 156
Rivetless chain, 117
RMA, 70
Roll, 34, 40, 42, 71, 73, 76-79, 92, 107
Rollers, 110, 134
Rubber Manufacturers Association, 70

Scraper conveyor, 116, 148, 150, 152, 154
Scraper of flight conveyor, 108
Scraper, 107, 108, 116, 118, 148, 150, 151, 152, 153, 154
Screw conveyor, 6, 7, 11
Screw feeder, 153
Screw, 6, 7, 11, 49, 50
Selection of attachment links, 139

Selection, 10, 18, 28, 75, 99, 131, 137, 139
Service factors, 136
Shock loads, 126
Slack side tension, 48, 130
Solid hub bodies, 141
Solid weave, 67
Sources of supply, 27
Spacing, 47, 50, 51, 73, 89, 138
Special applications, 157
Special chains, 118
Speed factor, 137
Speed, 37, 48, 100, 102, 126, 137, 147, 160
Split (arm or plate) body, 140
Split hub bodies, 142
Sprockets, 109-112, 118, 123-130, 138, 140-144, 147
Steel, 66, 117, 118, 121, 133, 134, 139, 149, 153
Stetigforderer, 103, 162
Storage bins, 7
Straight sidebar, 109
Straight warp weave, 67
Suggested normal spacing of belt idlers, 51
Supermal, 120
Supporting structure, 146
Systems approach, 21, 24

Tanks & Silos, 7
Tensile loads, 122
Tensile strength, 121
Tension ratings of conveyor belts, 70
Terms and definitions, 10, 108
Torque control devices, 99
Tradenames, 120
Training empty conveyor belts on idlers, 73
Transition from troughed idlers to terminal pulleys, 85
Troughing angle, 40, 41, 70, 76
Troughing idler, 40, 51, 85, 86, 92
Troughing, 40-42, 51, 70, 73, 76, 85-87, 92
Tubular conveyor gallery, 31
Tubular conveyor, 31, 161
Types of chains, 112
Types of idlers and design, 75
Types, 82, 112, 132, 143
Typical idler bearing assembly, 80
Values for weight factors and belt weights, 46
Variable speed hydraulic couplings, 100
Verify chain selection, 139

Wear strips, 130
Wear, 123, 124, 129, 130
Welded steel, 118, 149, 153
Wrap factor, 48-50